skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Leon-Saval, Sergio G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Schmidt, Dirk; Vernet, Elise; Jackson, Kathryn J (Ed.)
  2. Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)
  3. Geyl, Roland; Navarro, Ramón (Ed.)
    Efficiently coupling light from large telescopes to photonic devices is challenging. However, overcoming this challenge would enable diffraction-limited instruments, which offer significant miniaturization and advantages in thermo-mechanical stability. By coupling photonic lanterns with high performance adaptive optics systems, we recently demonstrated through simulation that high throughput diffraction-limited instruments are possible (Lin et al., Applied Optics, 2021). Here we build on that work and present initial results from validation experiments in the near-infrared to corroborate those simulations in the laboratory. Our experiments are conducted using a 19-port photonic lantern coupled to the state-of-the-art SCExAO instrument at the Subaru Telescope. The SCExAO instrument allows us to vary the alignment and focal ratio of the lantern injection, as well as the Strehl ratio and amount of tip/tilt jitter in the beam. In this work, we present experimental characterizations against the aforementioned parameters, in order to compare with previous simulations and elucidate optimal architectures for lantern-fed spectrographs. 
    more » « less